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Figure 1: Pandora simulates future world states (videos) under action control (natural language).

Action 1: The car turns left.

Action 2: Add a car in the front.

Initial State

Action 3: She turns her head left.

Action 1: The woman is talking.

Action 2: She waves her hand.

Initial State

Action 3: The red car continues to move.

Action 1: The red car moves along the path.

Action 2: Explosion happens.

Initial State
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Abstract

World models simulate future states of the world in response to different actions.
They facilitate interactive content creation and provides a foundation for grounded,
long-horizon reasoning. Current foundation models do not fully meet the capa-
bilities of general world models: large language models (LLMs) are constrained
by their reliance on language modality and their limited understanding of the
physical world, while video models lack interactive action control over the world
simulations. This paper makes a step towards building a general world model by
introducing Pandora , a hybrid autoregressive-diffusion model that simulates world
states by generating videos and allows real-time control with free-text actions.
Pandora achieves domain generality, video consistency, and controllability through
large-scale pretraining and instruction tuning. Crucially, Pandora bypasses the cost
of training-from-scratch by integrating a pretrained LLM (7B) and a pretrained
video model, requiring only additional lightweight finetuning. We illustrate ex-
tensive outputs by Pandora across diverse domains (indoor/outdoor, natural/urban,
human/robot, 2D/3D, etc.). The results indicate great potential of building stronger
genearl world models with larger-scale training.

1 Introduction

A world model (WM) is an abstract representation that an intelligent system uses to understand
and simulate the real world. The model encompasses various aspects of the environment, including
physical laws, spatiotemporal knowledge, objects, scenes, agents, and their dynamic interactions. In
particular, it allows to predict the future states of the world in response to different actions. Building
a general world model, therefore, can serve for interactive content creation, such as generating
realistic virtual scenes for video games and movies, developing immersive experiences in virtual and
augmented reality, and creating dynamic simulations for training and educational purposes. Perhaps
of even more significance is that a general WM provides a foundation for robust, grounded reasoning
in AI systems, enabling them to anticipate complex environments and plan actions, such as robots
navigating disaster scenes safely. WMs also hold the potential to power long-horizon reasoning that
improves decision making in fields like logistics and healthcare, by simulating various scenarios and
outcomes and identifying the most effective solutions.

Current large language models (LLMs) [1, 4, 37, 52, 68, 70, 71] are adept at generating human
language and are used as surrogates for world models in certain reasoning tasks [30, 78]. However,
language alone is a fundamentally insufficient and inefficient modality for describing various aspects
of the world, such as intuitive physics (e.g., predicting fluid flow based on its viscosity) [36].
Moreover, LLMs lack a robust understanding of physical and temporal dynamics in the real world,
relying on patterns in textual data without comprehending the underlying realities they describe
[79, 43, 51]. On the other hand, contemporary video generation models can produce high-quality
video content from given initial frames or text prompts [7, 9, 11, 25, 80, 83]. While these models can
animate consistent sequences to visualize diverse scenes, they miss the complex interactive nature of
the real world, lacking the ability for causal control and intervention with arbitrary actions during
simulations. Recent work has also developed interactive world models at scale, such as GAIA-1 [35]
for auto-driving, UniSim [81] for robotic manipulation, and Genie [12] for 2D games. These models
are typically specific to certain domains, permitting limited sets of actions and/or states.

This work presents Pandora , a step towards a general world model that simulates world states across
various domains by generating videos and allows real-time control through arbitrary actions expressed
in natural language. Pandora is an autoregressive model that sequentially processes actions (free text)
and previous states (videos) as inputs and generates next states (videos) as outputs (Figure 2). Pandora
introduces a staged training strategy akin to the successful recipe of training LLMs [52, 46, 77],
including: (1) large-scale pretraining with massive video and text data, respectively, to learn domain-
general understanding of the world and production of consistent video simulations; and (2) instruction
tuning with high-quality text-video sequential data to learn any-time text controllability during video
generation.

Crucially, the pretraining stage allows for the separate training of text and video modeling. We
thus can simply reuse existing pretrained LLMs and (text-to-)video generation models that have
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Figure 2: Model architecture of Pandora .

already achieved domain generality and video consistency in their own pretraining. We only need
to stitch and align the language and video models together with necessary additional modules and
lightweight tuning as described in §2. More specifically, in this work, we use the Vicuna-7B-v1.5
language model [17] and the DynamiCrafter text-to-video model [80] as the backbone. Using
larger, more sophisticated pretrained models (such as GPT-4 and Sora) is expected to yield stronger
performance. For the instruction tuning stage, we craft a large diverse set of action-state sequential
data, by re-captioning general-domain videos and synthesizing with various simulators for robots,
in-/out-door activities, driving, 2D games, and more. Similar to instruction tuning of LLMs that
boosts their instructability in general unseen domains, tuning on the curated data boosts the world
model’s real-time controllability that generalizes to broad unseen states and actions.

We illustrate extensive outputs generated by Pandora across various domains in §3. The model
demonstrates a range of desirable properties not exhibited by previous models. The results also
indicate great potential for further enhancement with larger-scale training in the future.

• The model simulates video states across broad domains: Pandora is capable of generat-
ing videos across a wide range of general domains, such as indoor/outdoor, natural/urban,
human/robot, 2D/3D, and other scenarios. This domain generality is primarily due to the
large-scale video pretraining (inherited from the pretrained video model).

• The model permits on-the-fly control with free-text actions: Pandora accepts natural
language actions as inputs during video generation to direct future world states. This differs
crucially from previous text-to-video models which allow text prompts only at the beginning of
the video. The on-the-fly control fulfills the promise of the world model to support interactive
content generation and enhance robust reasoning and planning. The capability is enabled by the
autoregressive architecture of the model (which permits text inputs at any time), the pretrained
LLM backbone (which understands any text expressions), and the instruction tuning stage
(which substantially enhances the effectiveness of control).

• Action controllability transfers across domains: As above, instruction tuning with high-
quality data allows the model to learn effective action control and transfer to different unseen
domains. We demonstrate that actions learned from a specific domain apply seamlessly to states
in diverse new domains.

• Autoregressive model backbone enables longer videos: Existing video generation models
based on diffusion architectures typically produce videos of a fixed length (e.g., 2 seconds).
By integrating the pretrained video model with the LLM autoregressive backbone, Pandora is
capable of extending the video duration indefinitely in an autoregressive manner. Together with
the additional training (e.g., instruction tuning), we show Pandora can generate longer videos
(e.g., 8 seconds) of higher quality.

2 Methods

2.1 Model Architecture

Pandora is an autoregressive world model. Given the previous states of the world, e.g., images or
video clips, and a natural language action, it predicts the next state of the world, which is also a video
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clip. Specifically, it formulates a state transition distribution:

P (St | St−1, At−1, ..., S1, A1), (1)

where Si and Ai are the state and action at time step i, respectively. Each state Si = (s1, ..., sN ) is a
single or a sequence of video frames, and each action Ai = (x1, ..., xM ) is a sequence of text tokens.
At the first time step, the state S1 is one single image, and the states S2, ..., SN at the following steps
are video clips.

Figure 2 gives an overview of the model architecture. The two core components of of Pandora include
the autoregressive backbone, which stems from a pretrained LLM, and the video generator, which is
initialized with a pretrained video model. To stitch the two components together, other necessary
components are added, including a vision encoder, and two adapters connecting the vision encoder to
the LLM backbone, and the LLM backbone to the video generator, respectively.

At each time step t, the autoregressive backbone accepts three sets of embedding vectors as inputs:
(1) the first is the sequence of visual embeddings, by the vision encoder followed by the adapter (a
Q-Former [44]), that encodes the previous world state St−1; (2) the second is the token embeddings
of the text words in action At−1; and (3) the third is a sequence of learnable embedding vectors (a.k.a.
query embeddings). The length and positions of the query embeddings correspond exactly to those of
the output embeddings by the autoregressive backbone to be fed to the video generator. Intuitively, the
query embeddings stimulate the model to start generating videos [21]. The autoregressive backbone
then generates a sequence of output embeddings. The adapter, which is a Q-Former, accepts the
output embeddings and produces a new sequence of embeddings. Finally, the video generator takes
the embeddings and generates the video clip outputs St. To improve the consistency of the new video
clip with the preceding video clip St−1, the video generator additionally takes the last four frames
of St−1 as input (or the single image of St−1 as input if St−1 is the initial state S1). In addition,
the video generator will take an FPS number to control the motion level of the video. The number
of frames generated in each video clip St depends on the specific pretrained video model used for
initializing the video generator. As described below, we used the DynamiCrafter [80] which generates
16 frames.

2.2 Staged Training

A general world model needs to achieve consistency, controllability, and generality—it needs to
generate consistent videos to describe the world state accurately, allow on-the-fly control by accepting
natural language actions at any time during video generation, and perform the above well across all
diverse domains (with different scenes and actions).

To this end, direct training of the world model requires massive high-quality (video S1, text A1, video
S2, . . . ) sequences as training data, which is hard to obtain in practice. We instead devise a two-stage
training strategy consisting of pretraining and instruction tuning.

The pretraining stage aims to acquire a few key capabilities, including (1) consistent general video
generation of the video generator, (2) general text understanding of the autoregressive backbone to
process actions, and (3) alignment of the representation spaces between the two components. The
first two capabilities can be learned separately by training the video generator and the autoregressive
backbone individually, or even by just plugging in existing pretrained video models and LLMs that
already possess these capabilities during their own pretraining. The reuse of separately pretrained
video and language models significantly reduces the training costs of the world model.

In the instruction tuning stage, we train the model on a curated video dataset with high-quality
instructions (actions) that focus on the dynamics of the videos. This training is aimed at enhancing
the model’s ability to follow natural language instructions and accurately predict subsequent video
states based on these directions.

We describe more details of the two training stages in the next sections, respectively.

2.2.1 Pretraining for Domain Generality and Generation Consistency

The pretraining stage aims to achieve the core capabilities of consistency and generality as described
above. This is similar to the process of building an LLM where large-scale pretraining enables the
LLM to generate consistent/fluent text in general domains.
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General understanding of natural language can be achieved by massive training on text data, and
generation of consistent general videos can be achieved by massive training on video data. Both of
these have been done on existing pretrained LLMs and video generation models. We thus can directly
reuse these models.

Specifically, we use Chat-Univi [38], which is a Vicuna-7B-v1.5 LLM equipped with a vision encoder,
as our base LLM (autoregressive backbone), and DynamiCrafter [80] as our base video generation
model. DynamiCrafter is a diffusion model pretrained to generate a video given an image and a text
prompt.

In the pretraining stage, we additionally want to align the pretrained LLM backbone and video model,
so that the output embeddings from the LLM can be passed along to the video model as input for
video generation. We used a video caption dataset WebVid-10M [5] for the alignment training. For
each (video, caption), we feed the first frame of the video and the caption into the LLM+vision
encoder and get the output embeddings from the LLM. Meanwhile, we feed the caption into the text
encoder of the video generation model and get the caption embeddings. We aim to match the two
embeddings, so that the output embeddings from LLM can be understood by the vidoe generation
model (just as how it understands the embeddings from its text encoder). Specifically, we minimize
the L2 loss between the two sets of embeddings, and trains the parameters of the adapter between
the LLM and video generator, as well as the query embeddings. Both the pretrained LLM and video
generation model are fixed at this stage.

2.2.2 Instruction Tuning for Real-Time Controllability

This stage aims to gain real-time controllability by training the model on high-quality instruction
tuning data. We construct such a dataset, which contains captions to precisely describe the dynamics
of different clips in each video. With the data, we finetune the model by minimizing a diffusion loss
on the videos given the instructions. In this stage, both the video generator and query embeddings are
finetuned, while other components are fixed.

Below we describe the creation of the instruction tuning data in more details. An overview of the
collected data is summarized in Table 1. The data come from both public corpus and simulators with
careful data processing.

Public Video Datasets To make the dataset general, we use a large-scale video dataset, Panda-70M
[15]. We first filter the dataset by aesthetic score evaluation, optical flow magnitude assessment,
cut detection, static video detection, and clip length filtering. Different from previous text-to-video
models, our model emphasizes the controllability of natural language actions towards the next state.
Therefore, we do re-captioning of the videos to get better captions that focus on the dynamics
of the videos. we prompt GPT-4 Turbo [1] to generate captions describing the dynamics of four
frames sampled from each video clip. This process yields a total of 500k video-text pairs. Besides
Panda-70M, we also collect video-action pairs from existing action-annotated datasets, including
Something-Something V2 [26], BridgeData V2 [73], and EPIC-KITCHENS [20]. This includes 260k
examples.

Dataset Category #Videos

Panda-70M YouTube 500k
Something-Something Human Activity 188k

BridgeData V2 Robot Arm 33k
HM3D Indoor 152k
MP3D Indoor 70k

StreetLearn Street view 146k
Carla Driving 75k

Coinrun 2D Game 30k
EPIC-KITCHENS Kitchen 39k

Total - 1.2M

Table 1: Instruction Tuning data statistics.

Simulation Data To provide our model with
more diverse and accurate training experience,
we use simulation environments to collect video-
action pairs. CARLA [22] is a simulation plat-
form for autonomous driving. It supports flex-
ible modifications to the environment at run-
time, making it suitable for simulating unex-
pected actions, such as Change the weather to
Sunset or Add a car to the front. We sampled
75k video-action pairs from Carla. MP3D [13]
and StreetLearn [50, 49] are indoor and urban
panorama scans. We built simulation environ-
ments to render these 3D scans. Turning actions
such as turn right for 60 degrees can be con-
structed by gradually changing camera poses
and collecting corresponding image projections.
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Besides, we prompt GPT-4 Turbo to generate scene descriptions, so that the instructions include both
turning actions and the final scene descriptions. We got 70k data from MP3D and 146k data from
StreetLearn, respectively. HM3D [57] is a 3D environment dataset of real-world indoor scenes. We
used Habitat-Lab [56, 65, 60] to render these indoor scenes and collect data by sampling trajectories
randomly. We created 152k data from it. Finally, we used Coinrun [19] for collecting 2D game
simulation data, resulting in 30k data.

3 Qualitative Results

We show qualitative results that demonstrate the core capabilities of Pandora as a world simulator.
Readers are encouraged to refer to https://world-model.ai for live video examples. We aim to
report more quantitative results in the future.

3.1 On-The-Fly Control across Domains

Pandora is a general world model capable of generating videos across a broad range of domains. It
permits on-the-fly control with free-text actions, i.e., it can accept text action control anytime during
the video generation and predict future world states accordingly. We show the generation results
of indoor/outdoor videos in Figure 3, robot/human videos in Figure 4, and 2D/3D game videos in
Figure 5. In Figure 6, we also show videos that correctly demonstrate basic physical phenomena,
demonstrating the model’s understanding of real-world physical concepts.

3.2 Action Controllability Transfer

Although some actions and their corresponding motion patterns only appear in some of the simulation
data, we found that Pandora can transfer the action controllability to different unseen domains. As
shown in Figure 7 and Figure 8, Pandora transfers 2D game ability from Coinrun and 3D simulator
ability from HM3D to other unseen domains, respectively.

3.3 Autoregressively Generating Longer Videos

With the autoregressive backbone, Pandora is capable of generating longer videos of higher quality in
an autoregressive manner. Pandora is trained on videos with up to 5 seconds (40 frames), but it is able
to generate longer videos. We show the results of generating 8-second (64-frame) videos in Figure 9.

6

https://world-model.ai


(a) Sci-fi style movie scene.

(b) Everyday city scene.

(c) Household scene.

Figure 3: Pandora can generate sci-fi or real-life videos in both indoor and outdoor environments.
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(a) A robotic arm manipulating several stuff.

(b) A real human doing some actions.

(c) An ego-view human activity

Figure 4: Pandora is capable of generating both robotics and human videos.
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(a) 2D game Coinrun.

(b) 3D game Minecraft.

(c) 3D game Grand Theft Auto V.

Figure 5: Pandora can generate various 2D and 3D game videos.

9



(a) Object movements because of wind.

(b) Object movements because of wind.

(c) The flow of liquid.

(d) The flow of viscous liquid.

Figure 6: Pandora is capable of generating videos that include common physical phenomena.
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(a) Source domain (Coinrun).

(b) Target domain (Game 1).

(c) Target domain (Game 2).

Figure 7: Pandora transfers the 2D game ability from the only 2D game in our training data, Coinrun,
to other unseen 2D games.
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(a) Source domain (HM3D).

(b) Target domain (Magic scene).

(c) Target domain (Colorful nature scene).

Figure 8: Pandora transfers the 3D indoor simulator ability to other unseen domains.
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Figure 9: Pandora is capable of generating longer video autoregressively.
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3.4 Limitations

Pandora can struggle to generate videos with high quality and good controllability. Figure 10 shows
failure cases about semantics understanding, motion control, and video consistency.

Figure 10: Pandora can fail in generating consistent videos, simulating complex scenarios, under-
standing commonsense and physical laws, and following instructions/actions.

(a) Results with small-scale training compute.

(b) Results with large-scale training compute.

Figure 11: Action: "the woman turns her head left". After scaling-up, the model shows better video
quality and controllability.

When conducting small-scale exploratory experiments, we found that the data quality, i.e., the
precision of the dynamics descriptions, has great influence on the model performance. In the domains
where high-quality simulation data exists, the model easily gains great controllability. But in the
domains of public video datasets, where captions generated by GPT-4 Turbo are noisy, the model
does not show good performance. However, when we increased the training compute, controllability
across general domains emergents on the model. We show a result comparison between the models
trained with small-scale and large-scale training compute in Figure 11. We hypothesize it is because
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increasing data size can mitigate some of the noises in the data. The results indicate the great potential
of building a stronger general world model by larger-scale training.

4 Related Works

World models World models simulate the future state of the world based on its previous states
and given actions [69, 10, 8, 3, 55]. Previous world models in AI systems are usually designed
for specific domains. For example, in robotics domain, world models are usually used for model-
based reinforcement learning in specific simulators [27, 28, 47, 14, 39]. In robotics domain, world
models [81, 88, 90, 2, 23] are capable of predicting future image or video states across diverse
robotics environments. These predictive capabilities are important for robots to understand the
environments, make informed decisions, and execute tasks accurately. Besides the robotics domain,
world models are also widely used in autonomous driving [76, 75, 35, 45, 87, 84, 89], where
they mainly focus on path planning and real-time decision-making, which is pivotal in enabling
vehicles to navigate complex environments safely and efficiently. There are also world models for
2D games [6, 18, 24, 29, 41, 48, 58]. For example, Genie [12] is a generative model capable of
simulating an interactive 2D game given an image. In this work, we make a step towards building a
more general world model that simulates any-domain states given any-text actions at any time.

Video generation models Video generation models aim to synthesize realistic videos given text
prompts or initial frames. Recent successes in diffusion models [33, 59, 62, 63] have paved the way
for their application in the video generation domain [40, 54, 86, 16, 31, 61, 66, 72, 74]. For example,
additional modules are introduced into the existing image diffusion models [34, 32, 9, 80, 85, 83]
to facilitate video generation capabilities. However, the length of generated videos is limited due
to the non-autoregressive nature. Consequently, the Diffusion Transformer (DiT) [53] has been
proposed to allow for autoregressive generation, and Sora [11] has further scaled it up, achieving
remarkable success in generating long, high-quality video. Furthermore, as the strong understanding
and generation ability of LLMs, [67, 82] have explored the usage of LLMs in vision generation
domain. Additionally, [42, 64] incorporate LLMs for video generation to enhance the semantic
understanding. Previous models are designed to generate scenes from input descriptions, yet they
frequently lack the ability to control actions or predict real-world states. On the contrary, Pandora is a
hybrid autoregressive-diffusion model, thus it is capable of on-the-fly control over video generation.

5 Conclusion

We presented Pandora as a step towards building a general world model. The model is able to
simulate world states by generating videos across different domains, and control the video on the
fly with natural language actions. Pandora introduces a staged training recipe that allows to reuse
and integrate existing pretrained language and video models. We believe larger-scale training with
larger backbone models (e.g., GPT-4 and Sora) will lead to further improvement in terms of domain
generality, video consistency, and action controllability. We are also excited about extending the
model by incorporating other modalities, such as audio, to better measure and simulate the world.
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